

Roland Berger views on H₂ market development

Opportunities for Hydrogen Storage Systems in Mobility & Infrastructure

Paris, December 2023

Roland Berger

H₂ storage addresses several mobility applications including on-road & off-road applications, railway, aerospace, maritime and infrastructure storage applications

Addressable market segments & applications for H₂ storage

1 Mobili	ity			2 Infrastructure			
On-road		Off-road		H2 _	Stationary storage for H ₂ production		
.	Heavy Duty Trucks Above 16t		Construction • Excavators (>110kW) • Wheel loaders/ dozers (>110kW)		• On-site electrolyzer at HRS		
	Medium Duty Trucks 6-16t		Dump trucks (>560kW)		location		
	Light Commercial Vehicles Below 6t		 Industrial Forklifts, incl. RT Forklifts (all) Self-propelled cranes (>110kW) 	↓ J <mark>R</mark>			
	Pick-ups Below 6t		Agriculture ∙ Tractors (>110kW)	to _=			
	Passenger Cars Below 6t	Other		<u></u>	 Mobile storage for H₂ transportation H₂ supply to HRS sites H₂ supply to industrial sites 		
	Urban busses Above 8 passengers			H ₂ Hydrogen	2 11 7		
	Coaches Above 8 passengers	Railway	Aerospace Maritime H ₂ penetration only after 2030 -	HRS Industry			

BEV & Gaseous H_2 are expected to be the main Zero-Emission technologies in the next decade; beyond 2030, Liquid H_2 is expected to address very limited applications

Overview of Zero-Emission technological outlook by segment

Source: Expert interviews, Roland Berger

The scope of Roland Berger global H_2 storage market study focuses on carbon fiber type III / IV tanks that are expected to become the main technologies by 2030

General overview of H₂ tanks solutions & scope of RB market study

Тур	e	Туре І	Туре II	Type III	Туре IV				
Illustration					-				
Inne	r liner material	Metal: steel or aluminum	Metal: steel or aluminum	Metal: steel or aluminum	Plastic: polyethylene or polyamide				
Overwrap material n/a		n/a	Composite : glass fiber or carbon fiber, hoop direction overwrap	Composite : glass fiber or carbon fiber, full direction overwrap	Composite : glass fiber or carbon fiber, full direction overwrap				
Pres	ssure level [bar]	~350 bar	Up to 1,000 bar	350 to 700 bar	350 to 700 bar				
Tan [EUI	k price²⁾ R/kg; 2023]	100-150 EUR/kg	250-350 EUR/kg	350- 550 EUR/kg depending on pressure	400-500 EUR/kg depending on pressure				
Targ	get applications			 🏎 🦛 🛲					
Exis horr	ting ologation area	Worldwide	Worldwide	(@) Worldwide	Conly from Only from Q1 2024				
	Weight	High weight	High weight	Medium weight	Low weight				
(Cons	Space requirement	Large space requirement	Little space requirement	Little space requirement	Little space requirement				
Pros &	Cycles resistance	Low resistance to intensive stress cycles	Medium resistance to intensive stress cycles	Medium resistance to intensive stress cycles	High resistance to intensive stress cycles				
	Maintenance	Low level of maintenance	Low level of maintenance	Low level of maintenance	Low level of maintenance				
1)0	Expected main technology by 2030 (scope of RB market study) High Medium Low Mobility - On-road vehicles Mobility - Off-road vehicles Main Infra Stationary storage for H ₂ production sites Infra Mobile storage for H ₂ transportation 1) Only for specific forklifts applications: 2) Optimal price level for maximum reservoir pressure capacity.								

Source: Expert interviews, Roland Berger

To store H_2 in mobility, Gaseous H_2 solutions are the main systems already in operation while Liquid H_2 & Cryo-compressed H_2 are still under development

H₂ storage system technologies - Overview

	4	Gaseous - GH ₂		\bullet Liquid & affiliated – LH ₂ \rightarrow			
	GH ₂ - Type III	GH ₂ - Type IV	GH ₂ – Type V	sLH ₂ ¹⁾	Cc-H ₂ ²⁾		
Description		Promote here: Consider a manage Brand Consider a manage Brand Consid		New office of the second	ALL POLIDION WARNING WINDOW		
	CF vessel – Aluminum liner	CF vessel - Polymer liner	CF vessel - No liner	Steel inner & outer vessel with isolated inner vessel	CF inner & steel outer vessel with isolated inner vessel		
Use of CF:	\checkmark	\checkmark	\checkmark	×	\checkmark		
Comments	Temporary solution (esp. in China) before switch towards type IV given better performances, easier manufacturing process and comparable costs of type IV	 Amporary solution (esp. in hina) before switch wards type IV given better anufacturing process and anufacturing process and anufacturing process and anufacturing process of type IV Main solution expected until 2035: Mature product Lower energy cost (c. 25% less vs LH₂) RfQs: Main OEMs requiring Type IV vessels Infrastructure readiness: c. 900 HRS in operation as of 2023 in the world 		 Benefits: Longer range (> 1,000 km) Expected lower CAPEX (c35% vs GH₂) Issues still to be fixed: Maturity: Safety issues, refueling management Infrastructure readiness: No infrastructure available Relevant in particular use cases esp. long distance 	 Benefits: Longer range (> 900 km) No boil-off issues Issues still to be fixed: Maturity: No prototypes available Infrastructure readiness: No infrastructure available Relevant in particular use cases esp. long distance 		

1) Subcooled Liquid H₂; 2) Cryo-compressed H₂

Source: Research, Expert interviews, Roland Berger

No commercial applications expected

before 2030

We defined following segmentation to analyze the Infra. & Mobility markets -Retrofit is included in the Mobility sub-segments

Hydrogen market segmentation - Segmentation synthesis

Туре	Category	Sub-category	Sub-segment	Tank pressure		Comments		
1	On-Road ²⁾	Goods	HD (> 16 T) ³⁾	350 bar	700 bar	Long range vehicles requiring large storage capacity		
Mahilitur		transportation &	MD (6 T < X < 16 T) ³⁾	350 bar	700 bar	Depending on the usage/ type both $\rm H_2$ tanks to be used		
Μοριιιτλ		PC	LCV including Pick-ups (<6 T)		700 bar	Depending on the usage/ type both $\rm H_{2}$ tanks to be used		
			PC	350 bar	700 bar	Standards set by Toyota + Compacity constraints		
		Buses	Urban	350 bar	700 bar	Limited distance travelled per day with refueling access		
			Coaches	350 bar	700 bar	Long range vehicles requiring large storage capacity		
	Off-Road ²⁾	Construction	Excavators (>110kW)	350 bar	700 bar	Heavy duty vehicles requiring fast refueling		
		Industrial	Forklifts	350 bar	700 bar	Vehicles requiring fast refueling and counterweight (type I)		
		Agricultural	Tractors (>110kW)	350 bar	700 bar	Heavy duty vehicles requiring large range and fast refueling		
	Railway Multiple units, Passenger Locomotives, Shunters				700 bar	Potential fit to replace current Gasoline trains		
	Maritime			350 bar	700 bar	Very small market by 2030 - due to limited technological fit		
	Aerospace			350 bar	700 bar	Very small market by 2030 - due to limited technological fit		
2	Upstream		Stationary storage for $\rm H_2$ prod. sites	350 bar	700 bar	HRS with production on-site requiring stationary storage		
lafua	Midstream		Mobile storage for H_2 transportation	350 bar	700 bar	Cost efficiency requiring high-pressure storage		
structure			Buffer storage along midstream	350 bar	700 bar	Limited market for type III/IV, less competitive and no benefit		
			Tank as part of cascade stor. inside HRS	350 bar	700 bar	Very limited market for type III/IV		
	Downstream		Storage linked to industrial end-uses	350 bar	700 bar	Included in stationary /mobile storage - no other application		
			Storage linked to mobility applications	350 bar	700 bar	See mobility section		
			Storage linked to H_2 energy uses	350 bar	700 bar	Included in stationary /mobile storage - no other application		

1) Including back-up applications 2) Including retrofit market; 3) Deep dive in HDT and MDT use cases (Long-haul, last mile delivery, waste collection ...)

Source: Expert interviews, Roland Berger

Roland Berger expects the total market for H_2 storage solutions for Mobility and Infrastructure application to reach almost EUR 10 bn by 2030

H₂ storage market size synthesis for Mobility and Infrastructure applications [2023-2030]

📕 Mobility 📕 Infra

1. Zoom on mobility market

H₂ vessels addressable market in mobility includes all on-road vehicles, selected heavy-duty off-road applications and Forklifts, and Railway

Mobility: Addressable market segments & applications for H2 vessels

On-road		Off-road				
	Heavy Duty Trucks		Construction • Excavators (>110kW)			
	Medium Duty Trucks 6-16 t		 Wheel loaders/ dozers (>110kW) Dump trucks (>560kW) 			
	Light Commercial Vehicles		 Industrial Forklifts, incl. RT Forklifts (all) Self-propelled cranes (>110kW) 			
	Pick-ups <6 t	ATT.	Agriculture			
	Passenger Cars <6 t		Tractors (>110kW)			
	Urban buses >8 passengers	Maritimo (victor (constraints)			
	Coaches >8 passengers	Aerospace (potential after 2030)				

X: In scope

Our market model is built based on bottom-up use cases and confronted with experts' recent views of the market

Source: Expert interviews, Roland Berger

Roland Berger expects the Mobility market to represent almost EUR 7bn by 2030

H₂ storage market for mobility – Market value per sub-segment [EUR bn]

H₂ is expected to have higher penetration in buses, HDT, forklifts and multiple units due to its competitiveness compared to other zero emissions technology

 H_2 penetration¹⁾ in total vehicles production by segment, '23-'30 [%]

1) Includes FCEV and H₂ ICE technologies

Source: Roland Berger

Type IV vessels are expected to be the dominant technology used by 2030 with mostly 700 bar in mobility and 350/500 bar in infrastructure

Main $\rm H_2$ vessels types by application and geography

To decarbonize mobility, three main architecture are considered: H₂ Internal Combustion Engines, Fuel Cell Electric Vehicles & Battery Electric Vehicles

H₂ ICE, FCEV, BEV main architecture Illustrative H₂ICE **FCEV** BEV Powertrain Admission Exhaust BMS architecture Charger H₂ ICE Fuel ₿Ø Cell Battery H_2 H_2 Battery (12v)Gearbox DC/DC DC/DC Converter BMS Batterv Converter H_2 H_2 Inverter Inverter Electric Electric motor Reduction Reduction Axle Axle Axle Comments Axles main change depending on OEM Some architectures, especially large Some architectures, especially large vehicles use 2 or more electric motors vehicles use 2 or more electric motors. choices often on each axle Battery required as a buffer to the 駒 electric motor after the Fuel Cell Development of E-Axles to optimize space

Reduction

Wheels

Source: Expert interviews, Roland Berger

Energy storage

Energy conversion Power generation Auxiliaries

FCEV is more competitive than BEV in the HDT segment, in term of costs, energy consumption and range, H₂ ICE lacks efficiency to offer similar performances

$H_2 ICE, F$	-CEV, BE	v compari	son – visio	n 2030						Illustrative	
			PC - Sedan/S	SUV		CV & Pick-	up	HDT - 39 Tons			
		H ₂ ICE	FCEV	BEV	H ₂ ICE	FCEV	BEV	H ₂ ICE	FCEV	BEV	
Energy	Battery	-	c. 20 kWh	c. 75 kWh	-	c. 30 kWh	c. 100 kWh	-	c. 100 kWh	c. 700 kWh	
stored	HSS	c. 8 Kg H ₂	c. 6 Kg H ₂	_	c. 12 Kg H ₂	c. 10 Kg H ₂	-	c. 70 Kg H ₂	c. 70 Kg H ₂	_	
	Fuel cell	-	c. 40 kW	_	_	c. 50 kW	_		c. 350 kW		
Powertro	ain cost	c. 10 EUR k	c. 15 EUR k	c. 12 EUR k	c. 15 EUR k	c. 25 EUR k	c. 18 EUR k	c. 60 EUR k	c. 120 EUR k	c. 110 EUR k	
Energy consump	otion	c. 10 EUR / 100 Km	c. 7 EUR / 100 Km	c. 6 EUR / 100 Km	c. 20 EUR / 100 Km	c. 15 EUR / 100 Km	c. 15 EUR / 100 Km	c. 110 EUR / 100 Km	c. 70 EUR / 100 Km	c. 70 EUR / 100 Km	
Max rang	je	c. 800 Km	c. 900 Km	c. 450 Km	c. 600 Km	c. 750 Km	c. 400 Km	c. 650 Km	c. 1000 Km	c. 500 Km	
Recharge 0-100%	e Normal Fast	< 5 min	< 5 min	45 - 75 min 5 - 10 min	< 5 min	< 5 min	1 - 3 hours	10 - 15 min	10 - 15 min	8 - 10 hours 75 - 90 min	
Uses cases for hydrogen		Usage for long FCEV thanks t	g distance benef to longer range c	iting to the and faster	Usage for long FCEV thanks t) distance benefi o longer range a	ting to the nd faster	Usage for long distance and higher payload benefiting to the FCEV thanks to longer range			

charging time

Expected leading technology by segment

charging time

faster charging time & lighter powertrain

FCEV powertrain are more competitive in HDT compared to BEV powertrain driven mainly by the high capacity of battery required for the BEV HDT

², H₂ ICE, FCEV and BEV powertrain price comparison

PC powertrain price LCV powertrain price HDT powertrain price iğ: **Key assumptions** [EUR k: 2030] [EUR k: 2030] [EUR k: 2030] Average EV system price - Battery (EUR/kwh): HDT: 130 c. 20 kWh c. 75 kWh c. 30 kWh c. 100 kWh c. 100 kWh c. 700 kWh PC: 100 - Charger (EUR/vehicle): 12 Kg H 70 Kg H₂ 8 Kg H 6 Kg H₂ 10 Kg H_2 70 Kg H₂ -HDT: 2 000 vs PC: 500 c. 120 - E-motor + inverter + DC / DC (EUR/vehicle): 11% c. 110 - HDT: 13 000 vs PC: 3 250 9% 2% Average FCEV system price - HSS (EUR/kg): HDT: 413; LCV: 390; PC: 480 c. 25 25% - Fuel cell (EUR/vehicle): HDT: 60 16% 000; LCV: 8 500; PC: 7'000 c. 15 c. 60 85% 4% c. 18 - DC/DC converter(EUR/vehicle): 16% c.15 21% -HDT: 3 000; LCV: 1 250; PC: 750 -3% c. 12 15% 49% 7% - BMS (EUR/vehicle): 56% c. 10 16% 32% 18% - HDT: 1 000; LCV: 600; PC: 500 51% 3% 64% 45% Average ICE system price 6% 36% 42% - Engine + Gearbox + Exhaust (EUR): -4% 61% 51% 2% 28% HDT: 30 000; LCV: 9 000; PC: 4500 21% 52% 6% 1% 5% 3% 7% 1% 3% 1% 5% FCEV H2 ICE FCEV BEV FCEV H2 ICE BEV H2 ICE BEV Electric motor and inverter Fuel Cell BMS Electric Batterv Battery capacity HSS capacity Charger HSS DC/DC Engine + Gearbox + Exhaust

Source: Expert interviews, Roland Berger

Roland Berger | 16

Illustrative

FCEV energy consumption is more competitive in HDT compared to BEV, while BEV energy consumption is lower in LCV and PC segments

2, H₂ ICE, FCEV and BEV energy consumption comparison

Illustrative

H_2 ICE meets zero emission target, but will remain limited as a transition solution for low volumes or for niche applications due too higher TCO than FCEV / BEV

Comparison of key technologies to decarbonize mobility – Zoom on H₂ ICE

Source: Expert interviews, Roland Berger

2. Zoom on infrastructure market

Roland Berger expects the infrastructure market for H_2 mobile storage for transportation and stationary storage within HRS to reach EUR 2.8Bn by 2030

Infrastructure market size by segment & application [2023-2030]

Market value per segment [EUR bn]

- Mobile Storage for H2 transportation H2 supply to HRS sites
- Mobile Storage for H2 transportation H2 supply to industrial sites
- Stationary storage for on-site H2 production for HRS

Market value per region [EUR bn]

Current H_2 infrastructure for mobility is exclusively made of gaseous HRS – All liquid HRS were experimental and are now out of order with no further plans

Mapping of existing H₂ production and distribution infrastructure

Along the clean H_2 value chain, two main applications for type III & IV vessels emerge : Stationary storage in production and H_2 transportation

Identification of opportunities for Carbon Fiber Vessels (Type III & IV) along the H₂ value chain

Requirements per segment: 🗣 Limited 💠 Medium 🗣 🌩 High 📃 In scope

X Infrastructure Dotentially growing need for H₂ storage solutions until 2030 🕎 Potentially growing need for H₂ storage solutions until 2030 – already covered via other value chain segments

Type III & IV vessels are used as stationary storage in refueling stations with H_2 production capabilities and to supply refueling stations and industrial sites

H₂

Deep-dive on sub-segments for carbon fiber vessels (type III & IV)

Green H₂ production plants (either for on-site direct usage or delivery) require

stationary storage to balance intermittent production. Most sites are currently

equipped with type I & II vessels but are, in certain applications, expected to be

Stationary storage for H₂ production sites

2 H₂ transportation storage

Storage solutions made of type III & IV vessels, used to **transport H₂ from production sites to consumption sites** (including temporary storage in case of containers/trailers left on-site as temporary storage solutions) in order to supply mainly HRS and industrial consumers without on-site electrolyzer, vs. type I and type II solutions

1) Without on-site ELY

Description

Source: Expert interviews, Roland Berger

111111

3. Competitive landscape

10 OEMs have high H_2 ambitions, Hyundai & Toyota covering all segments, Renault, GM & Stellantis focusing on LCV and remaining players trucks and buses specialists

Overview of OEMs with highest H_2 ambitions

	Main OEMs ¹⁾	Regions						Programs #	Launch Year	Maturity
	🕢 НҮШПДАІ		✓	~	~	✓	✓	x 9	2013	
Historical H ₂ players	()		✓	~	~	~	v	x 8	2014	
	Renault Group	٢		✓		~		x 4	2014	
LCV & Passenger cars speciali	st					✓	~	x 2	2026	
	STELL			~		✓	✓	x 9	2021	
			✓					x 2	2023	
	(VOLVO)		~	~				x 3	2025	
Truck & Bus specialists			✓	~				x 4	2026	
	DAIMLER TRUCK		✓	~		~		x 4	2026	
	IVECO	۲	v	~				x 2	2023	

🗸 Program announced 🛄 Heavy Duty Truck 📺 Medium Duty Truck 🚗 Passenger car 🛼 Commercial Vehicle 🛲 Bus 🛲 Coach

1) Selection of the OEMs with the highest volume over the period 23-30 excluding Chinese OEMs; 2) Vehicles volumes among announced programs over 23-30 period challenged by RB

Source: IHS Market, Roland Berger

Forvia, PO and Hexagon have wider coverage of market segments while remaining players are focusing on specific segments

Vessel manufacturer positioning

	FORVIA		HEXAGON	Å MAGNA	H ₂ Storage Solutions	VOITH	WORTHINGTON			
	000	••	00	ÐÐ		000	Đ			
	¢		•	Ð		••		¢		
	¢		••	••	e	••	•	Đ	•	•
	00	••						••		••
	000	000		e						
	000	••	•							
	Ð	0	000	•	Đ		Ð			•
	••	O	000		000	O	•	••		00
	🕂 🕂 🕂 High				'					

🚛 Heavy Duty Truck 🚛 Coach 🏬 Medium Duty Truck 🚎 Bus 🤛 🚓 Light Commercial vehicle & Pick-up 🦚 Passenger car 🕺 Mobility – Off Road 🚛 🚇 Infrastructure

Source: Roland Berger

Roland Berger